
Building Containerlab
with cEOS

Workshop

How to build a lab environment
with Containerlab and cEOS-lab

Petr Ankudinov, 2024

Agenda

Setup Docker on the host

Install Containerlab and import cEOS-lab image

Deploy the lab

Inspect and destroy the lab

Deploy the lab with a custom startup config

Make a packet capture

cLab in a Container

Possible caveats

This workshop is a step-by-step guide explaining
how to build a lab environment with Containerlab
and Arista cEOS-lab. It is focusing on essential
and cEOS-lab specific features. Please check
Containerlab documentation for more details.

2

https://containerlab.srlinux.dev/
https://containerlab.srlinux.dev/

How To Run The Workshop
To run the labs in this workshop, you can use one of the following options:

Build you own Ubuntu VM from scratch. (Recommended!)
This option will allow you to experience the entire cLab enviroment build process from the very
start, without any pre-installed dependancies

Requirements
Ubuntu LTS 22.04 or later

8 GB RAM and 4 vCPUs

Start the Github Codespace from this repository. (Fastest!)

Open the lab dev container locally on your laptop with Docker Desktop or sever with Docker CE:
you can download required files here and open them in VSCode

when running the lab locally, you must set all required environment variables on your machine

3

https://codespaces.new/arista-netdevops-community/one-click-se-demos?quickstart=1&devcontainer_path=.devcontainer%2Fclab-build-containerlab-with-ceos%2Fdevcontainer.json
https://arista-netdevops-community.github.io/one-click-se-demos/lab_archives/clab-build-containerlab-with-ceos.tar.gz

CPU Architechture
Only x86 CPU architecture is supported!

It is technically possible to run Container lab on ARM, but there are no network
device images available for ARM as of May 2024.

4

https://containerlab.dev/install/#containerlab-on-arm-based-macs

Setup Docker on the Host

Check if Docker is already installed. In this case
you can skip the steps below.

1. Install Docker on the host. The detailed instructions
are available here. You can used one-liner script for
that.

2. Add your user to the docker group.

3. Logout and login again to apply the changes.

4. Check the Docker version and run hello-world
container to test functionality.

5. You must be able to run docker commands
without sudo if it was installed correctly.

install Docker
sudo curl -fsSL https://get.docker.com | sh
add user to the docker group
sudo usermod -aG docker ${USER}
test docker
docker --version
docker run hello-world

NOTE: If you are running this workshop in
Codespace or provided dev container, Docker is
pre-installed. As the workshop magic happens
inside a container in this case, we rely on Docker-
in-Docker concept to provide required functionality.

5

https://docs.docker.com/engine/install/ubuntu/

Setup Git (Optional)

Git must be pre-installed on a Linux system. Otherwise you are in a wrong place. Escape!

Setup your name and email address:

git config --global user.name "<first-and-2nd-name>"
git config --global user.email "<your-email>"

Check the current configuration:

git config --list

NOTE: On Codespace Git is pre-installed and pre-configured.

6

Download cEOS-lab Image

1. Login to Arista Software Download portal. You
need to have an account to download the image.

2. Select EOS > Active Releases > 4.30 > EOS-
4.30.6M > cEOS-lab .

3. Download cEOS-lab-4.30.6M.tar.xz image.

4. Upload the image to your lab VM. For example,
you can use SFTP to transfer the image:

sftp ${REMOTE_USER}@${UBUNTU_VM_IP}:/home/${REMOTE_USER}/${IMAGE_DIR} <<< $'put cEOS-lab-4.30.6M.tar*'
for example:
sftp user@10.10.10.11:/home/user/images <<< $'put cEOS-lab-4.30.6M.tar*'

If Github Codespace or provided Dev Container
is used and the Arista token is set, the image will
be pulled from arista.com automatically.

7

https://www.arista.com/en/support/software-download

Import cEOS-lab Image

1. Go to the directory with the uploaded image and import the image:

docker import cEOS-lab-4.30.6M.tar.xz arista/ceos:4.30.6M

NOTE: you can also import the image with the tag latest to allow quick "upgrade" of those lab where
specific version is not required: docker tag arista/ceos:4.30.6M arista/ceos:latest

2. Confirm that the image was imported successfully:

$ docker image ls
REPOSITORY TAG IMAGE ID CREATED SIZE
arista/ceos 4.30.6M 21b540a4a343 45 minutes ago 1.95GB
arista/ceos latest 21b540a4a343 45 minutes ago 1.95GB
hello-world latest b038788ddb22 3 months ago 9.14kB

8

Install Containerlab

It's just a one-liner:

bash -c "$(curl -sL https://get.containerlab.dev)"

Refer to the Containerlab quick start documentation for the details.

Containerlab is pre-installed if you are using Codespaces.

9

https://containerlab.dev/quickstart/

Deploy The Lab

Inspect topology.clab.yml and deploy the lab:

sudo containerlab deploy

This command will deploy Containerlab with the
default EOS configuration provided by
Containerlab.

(Optional): you can add --debug flag to get
additional information while Containerlab is
starting.

NOTE: there is no need to specify topology file
explicitely, as there only one .clab.yml file in
the current directory. When multiple topologies
are present, the topology to be started must be
specified explicitely.

10

Inspect the Lab

Once the lab is ready, you'll see a table with the list of deployed containers, their host names and management IPs:

+---+------+--------------+---------------------+------+---------+--------------+--------------+
| # | Name | Container ID | Image | Kind | State | IPv4 Address | IPv6 Address |
+---+------+--------------+---------------------+------+---------+--------------+--------------+
1	h01	5367c60bcb1c	arista/ceos:4.30.6M	ceos	running	10.0.3.1/16	N/A
2	l01	783f209af70e	arista/ceos:4.30.6M	ceos	running	10.0.2.1/16	N/A
3	l02	47f9904801ce	arista/ceos:4.30.6M	ceos	running	10.0.2.2/16	N/A
4	s01	82812ceefb42	arista/ceos:4.30.6M	ceos	running	10.0.1.1/16	N/A
5	s02	2839bc4a1ca7	arista/ceos:4.30.6M	ceos	running	10.0.1.2/16	N/A
+---+------+--------------+---------------------+------+---------+--------------+--------------+

You can call the table again any time with sudo clab inspect -t topology.clab.yml . Or simply sudo clab inspect .

Containerlab creates corresponding entries in the /etc/hosts file as well:

$ cat /etc/hosts | grep clab- -A 5
CLAB-build-clab-with-ceos-START
10.0.2.1 l01
10.0.2.2 l02
10.0.1.1 s01
10.0.1.2 s02
10.0.3.1 h01
CLAB-build-clab-with-ceos-END

You can also list containers using docker command:

$ docker container ls
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
5367c60bcb1c arista/ceos:4.30.6M "bash -c '/mnt/flash…" 18 minutes ago Up 18 minutes h01
82812ceefb42 arista/ceos:4.30.6M "bash -c '/mnt/flash…" 18 minutes ago Up 18 minutes s01
783f209af70e arista/ceos:4.30.6M "bash -c '/mnt/flash…" 18 minutes ago Up 18 minutes l01
2839bc4a1ca7 arista/ceos:4.30.6M "bash -c '/mnt/flash…" 18 minutes ago Up 18 minutes s02
47f9904801ce arista/ceos:4.30.6M "bash -c '/mnt/flash…" 18 minutes ago Up 18 minutes l02

11

Access cEOS-lab CLI

There are few options to access cEOS-lab CLI:

SSH to the container. For ex.:

the default login is `admin` and password is `admin`
ssh admin@l01

Connect to the "console" using Docker command. For ex.: docker exec -it l01 CLi

NOTE: docker exec -it l01 bash allows to connect directly to the switch shell.

Execute few command to confirm that cEOS-lab is functioning:

show version

show lldp neighbors

show running-config

12

Destroy the Lab

Destroy the lab with sudo containerlab destroy

This will stop all containers, but will keep the files created by clab for the next run. For example, startup-
configs.

Check the flash content for leaf1 and inspect it's startup config:

$ ls clab-build-clab-with-ceos/l01/flash
AsuFastPktTransmit.log SsuRestoreLegacy.log debug kickstart-config startup-config
Fossil aboot fastpkttx.backup persist system_mac_address
SsuRestore.log boot-config if-wait.sh schedule tpm-data

To remove these files and have a clean environment on the next run, use --cleanup flag:

sudo containerlab destroy --cleanup

13

Deploy the Lab with Custom Startup Config

Deploy the lab with the custom configuration:

sudo containerlab deploy --debug --topo clab/topology.clab.yml --reconfigure

NOTE: --reconfigure is required if --cleanup flag was not specified in the previous step. Otherwise custom
configs can be ignored and startup configs in clab-build-clab-with-ceos/ will be used instead.

Custom startup configs are located in the clab/init-configs directory and assigned to every node using startup-
config: key in the topology.clab.yml . This allows creating pre-configured labs. In this workshop switches are
preconfigured with a full EVPN MLAG setup. Host is pre-configured as well and should be able to ping the default gateway
and diagnostic loopbacks of leaf switches:

$ ssh admin@h01
Password:
h01>en
h01#ping 10.100.100.1
h01#bash for i in {3..4}; do ping -c 4 100.64.101.${i}; done

14

Additional Checks
Execute following commands on leaf1 to confirm that it is functioning as expected:

show ip bgp summary

show bgp evpn summary

show mlag

show port-channel dense

l01#sh ip bgp summary
BGP summary information for VRF default
Router identifier 100.65.255.3, local AS number 65101
Neighbor Status Codes: m - Under maintenance
 Description Neighbor V AS MsgRcvd MsgSent InQ OutQ Up/Down State PfxRcd PfxAcc
 s01_Ethernet1/1 100.65.0.0 4 65100 12 14 0 0 00:04:26 Estab 1 1
 s02_Ethernet1/1 100.65.0.2 4 65100 11 13 0 0 00:04:26 Estab 1 1
 l02 100.65.2.1 4 65101 12 12 0 0 00:04:29 Estab 4 4

15

cEOS-lab Interface Mapping

The lab with custom configs also has a custom interface
mapping defined in interface_mapping.json .
This can be useful to match real interface names, for example
to have Management1 interface on cEOS-lab instead of the
default Management0 or to get EthernetX/X style naming.

To get / as part of an interface name you can simply use _
(underscore) in cLab topology file. There is no need to define
interface map for that. However management interface can
only be renamed via interface mapping.

{
 "ManagementIntf": {
 "eth0": "Management1"
 },
 "EthernetIntf": {
 "eth1_1": "Ethernet1/1",
 "eth2_1": "Ethernet2/1",
 "eth3_1": "Ethernet3/1",
 "eth4_1": "Ethernet4/1",
 "eth10_1": "Ethernet10/1"
 }
}

16

Make Packet Capture

Every container has it's own Linux namespace. To list all interfaces for leaf1, execute following command:

sudo ip netns exec l01 ip link

Run following command and wait a few minutes to capture a BGP packets:

sudo ip netns exec l01 tcpdump -nni eth1_1 port 179 -vvv

You can clear BGP sessions on l01 if it takes too long to capture keepalives: clear ip bgp *

For additional details about packet capture check cLab documentation.

$ sudo ip netns exec l01 tcpdump -nni eth1_1 port 179 -vvv
tcpdump: listening on eth1_1, link-type EN10MB (Ethernet), snapshot length 262144 bytes
12:44:46.487613 IP (tos 0xc0, ttl 1, id 5838, offset 0, flags [DF], proto TCP (6), length 71)
 100.65.0.0.41659 > 100.65.0.1.179: Flags [P.], cksum 0x5113 (correct), seq 4189457049:4189457068, ack 2029471463, win 215, options [nop,nop,TS val 2090790905 ecr 910314922], length 19: BGP
 Keepalive Message (4), length: 19
12:44:46.487696 IP (tos 0xc0, ttl 1, id 37600, offset 0, flags [DF], proto TCP (6), length 52)
 100.65.0.1.179 > 100.65.0.0.41659: Flags [.], cksum 0x0b93 (correct), seq 1, ack 19, win 215, options [nop,nop,TS val 910333765 ecr 2090790905], length 0
12:44:56.117576 IP (tos 0xc0, ttl 3, id 16321, offset 0, flags [DF], proto TCP (6), length 71)
 100.65.255.3.179 > 100.64.255.1.36257: Flags [P.], cksum 0xba92 (correct), seq 3638527337:3638527356, ack 2720785880, win 211, options [nop,nop,TS val 4112950959 ecr 1286050690], length 19: BGP
 Keepalive Message (4), length: 19
12:44:56.117754 IP (tos 0xc0, ttl 3, id 31784, offset 0, flags [DF], proto TCP (6), length 52)
 100.64.255.1.36257 > 100.65.255.3.179: Flags [.], cksum 0x5add (correct), seq 1, ack 19, win 212, options [nop,nop,TS val 1286076241 ecr 4112950959], length 0
12:45:14.505482 IP (tos 0xc0, ttl 1, id 37601, offset 0, flags [DF], proto TCP (6), length 71)
 100.65.0.1.179 > 100.65.0.0.41659: Flags [P.], cksum 0x99f2 (correct), seq 1:20, ack 19, win 215, options [nop,nop,TS val 910361783 ecr 2090790905], length 19: BGP

17

https://containerlab.dev/manual/wireshark/

Containerlab in a Container

Destroy the lab with cleanup flag: sudo containerlab destroy --topo clab/topology.clab.yml --cleanup

It is possible to run the containerlab on the host without installing it by simply running it in a container. This is helpful on
MacBooks (the only way to run cLab) and advanced use cases (like this workshop).

Start Containerlab by using this command:

docker run --rm -it --privileged \
 --network host \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /etc/hosts:/etc/hosts \
 --pid="host" \
 -w $(pwd) \
 -v $(pwd):$(pwd) \
 ghcr.io/srl-labs/clab bash

This will start the container in the interactive mode. Once in the container prompt, execute following command to start the lab:

containerlab deploy --debug --topo clab/topology.clab.yml --reconfigure

Destroy the lab with containerlab destroy --topo clab/topology.clab.yml --cleanup when ready and exit the container by
typing exit .

18

Containerlab in a Container (Non-Interactive)

Running cLab container in non-interactive mode is
helpful to create shortcuts, etc.

You can test it now or skip this step.

Check the documentation for additional details.

deploy the lab
docker run --rm --privileged \
 --network host \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /etc/hosts:/etc/hosts \
 --pid="host" \
 -w $(pwd) \
 -v $(pwd):$(pwd) \
 ghcr.io/srl-labs/clab containerlab deploy --debug --topo clab/topology.clab.yml --reconfigure

destroy the lab
docker run --rm --privileged \
 --network host \
 -v /var/run/docker.sock:/var/run/docker.sock \
 -v /etc/hosts:/etc/hosts \
 --pid="host" \
 -w $(pwd) \
 -v $(pwd):$(pwd) \
 ghcr.io/srl-labs/clab containerlab destroy --topo clab/topology.clab.yml --cleanup

19

https://containerlab.dev/install/#container

Crafting Your Own Container

It is easy to craft your own container with Containerlab installed.

You can check some Dockerfiles in this repository for inspiration or check cLab documentation

Possible reasons to create your own container:

Produce a consistent environment that is easy to share.

Pre-install additional tools. (Ansible, docker-in-docker, etc.)

Add aliases, etc.

This workshop is a good example of an enviroment using a custom pre-build container with Docker-in-Docker
and cLab

20

https://github.com/arista-netdevops-community/one-click-se-demos
https://containerlab.dev/install/#docker-in-docker

Ansible with Containerlab

When containerlab starts it automatically creates Ansible inventory that can be used to automate certain tasks
in the lab.

Start the lab and inspect the inventory file: cat clab-build-clab-with-ceos/ansible-inventory.yml

Check if ansible is already installed: ansible --version

Install Ansible if it's not present:

pip3 install "ansible-core>=2.14.0,<2.16"
ansible-galaxy collection install ansible.netcommon
ansible-galaxy collection install arista.eos
install community.general to support callback plugins in ansible.cfg, etc.
ansible-galaxy collection install community.general

Inspect ansible.cfg and make sure that it is matching your environment.

Run the playbook: ansible-playbook playbooks/check_the_lab.yml

The playbook will execute number of show commands on all switches in the lab and print output on the screen.

21

Possible Caveats

WARNING: If you are planning to deploy a high scale
lab, test it on a non-production host that you can
access and recover any time. Incorrectly deployed
Containerlab at scale can bring your host down due to
high CPU utilization on start.

It's always good to add --max-workers and --
timeout flags to your containerlab deploy command.

Use recent cEOS-lab version. 4.30 or higher is strongly
recommended!

cLab is creating a lot of files as root. That can cause
permission issues. For example, make sure that all
cLab files are gitignored:

ignore clab files
clab-*
*.bak

22

Additional Scale Caveats

In the past Ubuntu used to have low fs.inotify.max_user_instances limit. On top, older cEOS-lab versions were decreasing this
system limit to 1256. This was causing issues with high scale labs.

On a modern system and any cEOS-lab later than 4.28 this system is high enough. 62800 is the default. Increasing this limit on a
modern host with high memory is not causing any issues. Feel free to play with this parameter if required:

set system limit
sudo sysctl -w fs.inotify.max_user_instances=62800
create 99-zceos.conf
sudo sh -c 'echo "fs.inotify.max_user_instances = 62800" > /etc/sysctl.d/99-zceos.conf'
check the limit
sudo sysctl -a | grep -i inotify

topology:
kinds:
 ceos:
 # mount custom 99-zceos.conf to cEOS-lab containers
 binds:
 - /etc/sysctl.d/99-zceos.conf:/etc/sysctl.d/99-zceos.conf:ro

Generally you don't have to touch that. But be aware and check in case of issues.

23

Q&A
Containerlab

This repository

24

https://containerlab.srlinux.dev/
https://github.com/arista-netdevops-community/one-click-se-demos

